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TWO BASIC PARTIAL ORDERINGS FOR DISTRIBUTIONS
DERIVED FROM SCHUR FUNCTIONS AND MAJORIZATION

I*umar Joag-Dev and Jayaram Sethuraman

University of Illinois and Florida State University
Florida State University

ABSTRACT

Researchers in applied fields have long recognized the usefulness of in-
equalities when exact results are not available. The use of inequalities allows
us to say that one estimate is better than another, that one maintenance pol-
icy is better than another or that a certain selection procedure is better than
another etc.. even though, we may not know the best estimator. the best
maintenance policy or the best selection procedure. Such results are gener-
ally obtained from ii,,.qualities between two probability measures or random
variables. Inequalities between random variables are in turn obtained from
deterministic inequalities or deterministic partial orderings. ,

Hardy Littlewood and P6lva (1952) in their classic Y book entitiled
Inequalities have discussed various partial orderings in .". one of which is
known as majorization. .Majorization is intimately relaled to Schur functions.
This partial ordering was used to derive the-partial orderings of stochastic
majorization and DT ordering among disfributions in a series of papers by
Proschan and Sethuraman (1977) IPS 77]; Nevius, Proschan and Sethura-
man (1977)[NPS 77]; Hollarfder. Proschan and Sethuraman (1977). [HPS 77]:
and Hollander. Prosctan and Sethuraman (1981)., [HPS S1]. Even though
many more partial orderings of this type have been studied in recent papers
and books'by Marshall and 01kin (1979), Tong (19S0). Boland. Tong and
Prosch.9h (1987.1988). Abouanmoh, El-Neweihi and Proschan (19S9). the
above vo partial orderings remain the centerpiece in this type of research
endeavor. In this expository paper. r describe the essentials of stochastic
majorization and DT ordering and lremonstrate some applications. A new
proof of a slight generalization of e lier result on DT functions4it-HPS 81 ,
is given.
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1. Introduction. Researchers in applied fields have long recognized
the usefulness of inequalities when exact results are not available. The
use of inequalities allows us to say that one estimate is better than an-
other. that one maintenance policy is better than another or that a cer-
tain selection procedure is better than another etc.. even though. we may
not know the best estimator, the best maintenance policy or the best
selection procedure. Such results are generally obtained from inequali-
ties between two probability measures or random variables. Inequalities
between random variables are in turn obtained from deterministic in-
equalities or deterministic partial orderings.

Hardy Littlewood and P6lya (1952), in their classical book entitiled
Inequalities. have discussed various partial orderings in R", one of which
is known as majorization. Majorization is intimatelv related to Schur
functions. This partial ordering was used to derive the partial orderings
of stochastic majorization and DT ordering among distributions in a
series of papers by Proschan and Sethuraman (1977) [PS 77]: Nevius.
Proschan and Sethuraman (1977)[NPS 77]: Hollander. Proschan and
Sethuraman (1977). [HPS 77]; and Hollander. Proschan and Sethura-
man (19S1). [HPS 81]. Even though marly more partial orderings of
this type have been studied in recent books and papers by Marshall and
Olkin (1979), Tong (1980), Boland, Tong and Proschan (19S7.19SS).
Abouanmnoh, El-Neweihi and Proschan (1989), the above two partial
orderings remain the centerpiece in this type of research endeavor. In
this expository paper, we describe the essentials of stochastic majoriza-
tion and DT ordering and demonstrate some applications in Sections 2
and 3. A new proof of a slight generalization of earlier result on DT
functions is given in Section 3.

2. Schur Functions. We begin by reviewing some basic concepts and
results involving Schur functions. Given a vector x = (X1 .. 2 ..... r, ). let
Xl]..r[2] ..... X[] be a pcrmutation of its co-ordinates satisfying
.r[i] _ 3-[2] > ... v> [....ector x is said to majorize a vector v.
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x > y in symbols, if
) jx Ij] y~ij. J'= 1. ... L,-1

1=1 i=1

andn

aidn 
71I:-I I il = :

Majorization is not a true partial ordering on R" since x > y and
m

y"' x implies oilI timt the co-ordinate sequnoce of x is a prmutation



of the co-ordinate sequence of y. Howe,-r it is a partial o(rdering in the

cone {x : x E R". x, _ x 2 _ " _a,}. In any, case. x > y means that
the co-ordinates of x are more spread out than those of y.

A measurable function f defined on R" will be called a Schur function

if it is either Schur-convex. that is. if f(x) > f(y) whenever x > y. or

is Schur-concave. that is. if f(x) _< f(y) whenever x > y. It is easv to
construct Schur functions from the t-xample below.
EXAMPLE 2.1. Let f(x) = En g(.r,). Then f(x) is Schur convex if and
only if g is Schur convex.

A subset -4 of R" i ,-114 Schur increasin, if it satisfie;:

x E.4,y > x yE.4.

Note that the indicator of a Schur increasing set is a Schur convex func-
tion and in fact such indicators are the building blocks of the class of
Schur convex functions and act as their level sets.

A partial ordering for random vectors can be defined as follows using
Schur increasing sets. Let X and X' be random fl-vectors. Then X
is said to stoclia.tically majorize X' if for every Schur increasing set .4
in R", P[X C .4] > P[X' E .4]. or equivalently, E[.f(X)] _> Ef(X')].
for every bounded Schur convex function f on R". This is stated. in

St.M.symbols, as X > X'.

Stochastic majorization is a way of comparing distributions of ran-
dom vectors in much the same way as the stochastic ordering is for
comparing distributions functions of real random variables. In fact
stochastic majorization can be equivalently defined as stochastic or-
dering between certain transformed random vectors. Recall that Z is
said to be stochastically larger than Z' if for every bounded nonde-
creasing function h, Efh(Z)] _> E[h(Z')]. ,,..:.er the transformation

Y=(yi.i2. ') = T(x), where y, = ,.i 1.2. . It is

clear that C df TR" is a cone. Let X and X' be two random vectors
.Q V 771.

and let Y = TX and Y' =TX'. Then it is easy to see that X > X' if
and only if E[g(Y)] _ E[g(Y')] for all bounded measurable functions q
such that g(y) > q(y') whenever y, > ti'.i 1.2 ..... ii-I and Y,1st

that is. if and onlv if Y > Y' and , 11,
Oftentimes one shows that families of randon variable- are stochas-

tically ordered by showing that they satisfy a stronger condition called
TP 2 defined below. A function o defined on R?2 is said to be totally
pn.sitive of order 2 ( TP 2 ) if it is nonnegative and satisfies

o(A\.xi ),(A 2 .,X2) > o(A\1 ,r 2 )o(A2 . 1
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whenever A1 < A2 , xi < X2.
Let i denote either the Lebesgue measure on [0, ,c] or the count-

ing measure on the set of non-negative integers. A function defined on
(0. oz) x [0. D) is said to possess a semigroup property in A if

b(A1 + A2 .X) = o(A 1 .x - y)(A 2 y) d,ud(y).

A class of theorems generally known as preservation theorems allows
us to construct new Schur functions and understand their structure. The
following is one of the first preservation theorems for Schur functions. We

will see later that by using the TP 2 and Schur properties with a variety
of preservation theorems. several commonly used parametric fan-ilies of
distributions possess interesting Schur properties.

TH EOREM 1. Let f(x) be a Schur convex (Schur concave) function and
let o(A. x) defined on (0. c) x [0, c.) possess the TP 2 property and the
semigroup property in A. Let pi be the Lehesgue measure or the counting
measure. Let the integral

h(A) = J o(Ai,xi)f(x)du(x)

be well defined. Then h(A) is Schur convex (Schur concave).

This theorem appears as the main theorem in [PS 77]. in the principal
application of this theorem, one takes 6 to be a probability density
function and shows that the operation of taking the expected value of
a Schur convex function transfers the Schur convexity to the parameter
vector.

THEOREM 2. Let X and X' be a pair of n-vectors and define S =

-= zXi and S' =Z2=X'i. Then X > X' if and only if (a) S =, S'
and (b) for each bounded Schur convex function f, E[f(X)IS = s] >
E[.f(X')!S' = s], for all s E Af, where the distribution of S assigns
probability one to Af.

This theorem is one of the important tools to be found in [NPS 77].
The notion of a Schur family extends the concept of stochastic majoriza-
tion to a family of random variables. Let X.A be a family of random vec-
tors with a distribution PA indexed by A in R". The family XX and the

77'qt.m .

family P% are said to be Schur families ifA > A' implies that XA _> X%,.
The following theorem shows that in Schur families, stochastic ma-

jorization is preserved among the posterior distributions when there is

stochastic majorization among the prior distributions.
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THEOREM 3. Let {X,} be a Schur famil*y in A. Let G1 and G 2 be two
a t. •

prior distributions for A. such that G1  > G 2. Then the posterior of
X., under G1 stochastically majorizes the posterior of XX under G2 .

EXAMPLE 2.2. SHOCK MODELS. Consider a system subject to a
series of schocks and assume that the different types of shocks arrive
in a Poissonian fashion. For example, suppose that Xi(t) denote the
number of shocks of the ith type arriving in the interval [0. t]. Let P(k).
where k = (kj.k 2 ;....,k,), be the survival probability of the system
surviving ki shocks of the type i, i = 1.2...., n. Suppose that for each
i. the random variable Xj(t) has Poisson distribution with parameter
At. Then it follows that the survival function of the :ystem is given by

H(t; A) = E[P(X (t). X 2(t),..., X,(t))].

Assume further that P is Schur concave in k. This assumption holds.
for example. if th effects of shocks are independent and the P is the
product of 77 survival functions, each of which is logconcave. The TP 2
property of Poisson density functions and Theorem I show that the
survival function H(t: A) is Schur concave in A. For details see [PS 77].

EXAMPLE 2.3.SCHUR FUNCTION OF PARTIAL SUMS. Let X,-. i =
1.2 ..... ri j = 1.2...., ki be independent identically distributed ran-
dom variables with common logconcave density function g. Let f be a
Schur concave function and consider

k, k2 k,h~)= El:( L Xi,.,, L 22' X-,]
j1=1 j2=1 j.=

According to a result of Karlin and Proschan (1960), the k-fold convo-
lution 9 (A)(.) is TP 2 in k and .r. Using this and Theorem 1. it follows
that hi(k) is Schur concave in k.

EXAMPLE 2.4. SCHUR CONCAVITY OF MOMENTS. Let g be a Schur
concave density with the support [0. ,]n. Let a,. i = 1.2 ..... n. be
positive numbers and let

I-I_-gF(a x)dx

Ie a multivariate normalized moment. One can rewrite the integrand
r,'_- {.,, I(-"/F(oi) }g(x)exp{- i. Note that g(x) exp{ E.r }

iN Schur concave and that {fXQ-l-r/F(o)} is TP 2 in (o..x) and is a
semigroup on (0. x). From Theorem 1 it follows that -11(a) is Schur
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concave. Note that there are examples where .11(o) is Schur convex if
the normalizing constant r(o) is omitted in the integrand.

EXAMPLE 2.5. SCHUR FAMILIES. A number of parametric families

found in standard textbooks can be shown to be Schur. To name a few:
nmultinomi al, multivariate negative binomial. multivariate hypergeomet- ;\

ric, Dirichlet. Furthermore, families of independent random variables

such as Poisson, Gamma etc. also form Schur families. A host of such

examples are listed and demonstrated in [NPS 77].

3. Functions Decreasing in Transposition. The partial order-
ing of majorizat-ion can sometimes be better understood by a standard
partial ordering on the spac, of permutations on the set of n integers
(1.2... n). This leads to the concept of functions which are decreasing
in franspos tion (DT) which extend the concept of Schur functions.

Let ir= (-r1 , 2..,r,) denote a permutation of (1.2.... n). Let S

denote the group of such permutations 7r. Suppose that r and 7r' differ
only in two of their components. say the i' and j h: where i < J. 7, < 7,j
and that 7,i' -= r, ,rj' = 7i. We .ay that 7r' is a simple transposition

of r. If a member of S. say r" is obtained from w by successive simple
transpositions. we say that w dominates w" in transposition and write

t
x > x". Clearly this relation establishes a partial ordering in S.

Suppose that the components of x are such that x, _< X2 < ... < X,.

A permutation obtained by composing it with r is denoted by wo x and
defined by

V 0 x = (x, l ,X,2 .... r,,)

The partial ordering defined above can be extended in an obvious way
to the vectors obtained by permuting components of x.

In many applications one considers two vectors, the first vector corre-
sponding to a parameter and the second vector to an observed random
variable. It is useful to describe in a mathematical fashion the fact that a

random vector and its parameter vector increase and decrease together.
Oftentimes one needs to study and compare the way in which two ran-
doin vectors vary together. For instance, one use of rank correlation is
to measure how similarly two random vectors vary together. We will see
)clow that the partial ordering on permutations. defined above. provides

a satisfactory way to compare how similarly two vectors. which may be
random or deterministic, vary together.

Let A and - be subsets of R. A function g(. x) is said to be decreasing
in transposition (DT) on A" x E" if g(A o w. x o 7) = g(X. xK for every r
(that is. g is invariant under the same permutation on the two vectors)
and g(A.x or) _> g(A.x or'), where A, _< A2  < ... _ A,,: ,xi ,< ... <

5



.7,n and v > -'.
When g(x. y) is DT the function g(x.y) gives larger values when tlie

ranking in the pair (x. y) is more similarly ordered than when the ranking
is less similarly ordered.

In certain applications there is only one vector and it is desirable to
define functions of a single vector which exhibit a monotonicity under
this partial ordering. Let h be defined on - and suppose that the
components of x are in increasing order. Then h is said to be DT if

h(x o r) > h(x or') whenever w > W1.
DT functions occur quite frequently in statistics. The book of Mar-

shall and Olkin (1979) has popularized the notion of DT functions under
the more positive sounding name of Arrangement Increasing (AI) func-
tions.The following theorem shows the relation between DT. Schur and

TP 2 functions.

THEOREM 4. (a) Suppose g(A. x) = h(A - x). Then g is DT on R 2" if

and only if h is Schur concave.
(b) Suppose g(A.x) = h(A+ x). Then g is DT on R 2 " if and only if h

is Schur convex.
(C) Suppose g(A.x) = h( 1i..rt) then g is DT on Rl2, if and only if

h is TP 2.

The main result on DT functions is the following preservation theorem
which states that the DT property is preserved under the operation of
composition.

THEOREM 5. Let gi. i = 1.2 be DT on R 2" and a be a measure on
Rn such that for every Borel set A in R". a(A) = a(wr o A) for every W.
Suppose that

g,(X, Z) = 4 gA 9(X. ' ( -' C( )g~~)= g( zd~)

is well defined. Then g is DT on R 2".

The proofs of the above two theorems can be found in [HPS 77
Theorem 1 can be derived as a consequence of Theorem 5 and Theorem

4(b). Furthermore. the following result of Marshall and Olkini (1974) can
also be obtained from Theorem 5 and Theorem 4(a).

Tit LOIIFM 6. The convolution of two Sciur concave functions is Schur
coil a ve.

,Most of the families considered in Section 2 can also shown to have
DT property. In some sense this provides a 1Letter tool than Schur
concavity because of the connections seen earlier. One of the interesting
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applications is to the problem in ranking. Suppose the vector X has
density o(A. x) which is a DT functioi. Let g(A. r) be the probability
that the rank vector of X-observations is r. By using Theorem 5 above.
it can be shown that g is DT. This has important consequences in non-
parametric statistics. For details of this please see [HPS 77].

It should be noted that the concept of Schur concavity is closely related
to that of unimodalitv. From the above discussion it can be seen that a
function defined on R 2 is Schur concave if and only if it is permutation
invariant and its graph is such that it is unimodal on every section
perpendicular to the line of equality. This definition can be extended
to R" by considering all bivariate sections obtained by fixing (n - 2)
arguments and requiring Schur concavity for each section, in the sense
just described.

The convolution of two symmetric univariate unimodal densities can
be shown to be a symmetric unimodal density. This is known as Wint-
ner's theorem. Using this result it follows that the convolution of two
bivariate Schur concave densities is Schur concave. Again by considering
sections. an alternative proof for Theorem 6 can be provided.

The condition that the set {x : f(x) > c} be convex and permutation
invariant, for every c > 0, is sufficient for all the required sections of
an n-variate density f(x) to be symmetric unimodal. Many results that
follow from such basic unimodality have been explored in a book by
Joag-Dev and Dharmadhikari (1988) which are useful in deriving various
nr*-perties of Schur concave functions. For instance, consider a random
vector whose density function is logconcave. The logconcavity implies
that the set where the density exceeds a given constant is a convex set
and hence it satisfies the condition stated above. If the components of
this random vector are also exchangeable. then the density function is
Schur concavc.

An important theorem for multivariate logconcave densities is due to
Prkopa (1973) which is stated below.

TIIEoniEM 7. Let Y = (" 1.I 2 ..... Ym) have Jogconcave densitY. Then
Ld fZ = ..... Zk).(.aj.a2 . . k.)aohas alog-

concave density. In particular all marginals hav'e logconcave densities.

We-- will use this theorem to derive Schur concavity and DT properties
of deiiities of some random vectors obtained as overlapping sums of
random variables. We begin with a simple case before going to the
gCIeial case because the notation can get quite complicated.

Tii OTIEM S. Let X12. X 23 . -X 13 and X123 be random variables such that



XI 2 .X2 3 .XI 3 are exchangea ble. Define

x 1
( ) - V12 + X 13.
2 =X 12 + X2 3.

X32 ) X13 + X23 -

T, = X1(2) + X123.
T2 = X2(2) + N 1 23.

T3 = X3(2) + X123 -

The nl the density of T df (T -T2. T3 ) is Schur concave under el'ither one
of the following conditions:

(A) the joint density of X-"I2 N1 .X 2,3 .- 2 3 is log concave
(B) the randcm vector (X 1 2. X 13 ,X 23 ) has a logconcave den itv and

1. independent of the random variable X 1 23 .

PROOF: Note that T consists of overlapping sums of random variables.
A more general case of overlapping sums will 1)e considered later.

From the definition of T it is is easy to see that it is exchangeable. The
logcoicavity of the density of T folluws readily from Pr6kopa's theorem
Theorem 7) under condition (A). This establishes the Schur concavity

of the density of T under (A). When condition (B) holds. Pr6kopa'S
,Iheorem (Theorem 7) once again shows that the density .l.X 2.X 3 ) of

2). X(2). X(2)

-1 "-2 "- ) is Schur concave. The density function of T j- given
bv

J f(x - - . 3 - y)g(y)dv

where g(y) is the density function of X 1 .2.3 . Since a positive mixture of
Schur concave functions is Schur concave, it follows that the density of
T is Sciur concave. <

We iiow generalize the above to random vectors in R". Let J
{1.2.3 .... . For k = 2....,n, let

I, = {I : I is a subset of J with cardinality k).

1" = U h}I I and A,,= {I E '" i I}.
Let {X, .i = 1.2 ..... 7} and X 1 . I C I" b)e a collection of riandom
varial,les. Let IV(k) = {NX : I E N }. X. = N, and

X - (VA)' .A(') .....1 2J) where i = 1. ... n. and k= 2. 3. .
.)k)Thus .1  is the sum of random variables, each having k" subscripts. one

of which is i.

S 1 •i• • • i Il I I I I



TiEoRFM 9. Let X 1 ' = (X1 ,X .  X,,) be a randomi vcctor with
t)rolailit v densi'ty function which is DT. Suppose that the .et {X. I E
I. 1 1.> indeldent of X1) and one of the following con dition, holds.

(A) The' set of all variables {X .I E P } is e'cxchanlgat] and ha-v a
l, ,gconcave joint densit fun ct ion.
(B The collection of random variables in I1(k') has a logconcave den-

itv and is )ermutation invariant for ' = 2.3 ..... i - 1. and the collec-

tions I"('2 . 1I'(3) ..... 11'(n ) are independent.

Then the joint distribution of Z = (Z 1 . Z2 ..... Zn ) is DT. where

Z, =.X, + Z x( ')

k>2

PROOF: The argument is similar to the proof of Theorem S. Let T,

k> 2 X11, and T = {T . T,,T}
The density function of Z is the convolution of the dliisitv functions

of T and X" ), the second of vhich is DT by assumption. If we can show
that the density function of T is Schur concave. then it will follow that
tle (lnsity function of Z is DT from Theorems 4 and 5(a).

\Ve will now show that condition (A) or (B) implies the Schur coil-
,'avitv of the density of T.

When condition (A) holds it is easy to see that Prikopa's theorem
implies that the joint density of T is logconcave. The permutation in-

variance Of this joint density follows from the exchiangeability of {X. I E
P* }. This establishes the joint density function satisfies the DT property.

Welen condition (B) holds. Pr6kopa's theorem once again shows that
lie density function of X ( kl is log concave for A, 2.3.....I - 1 and is

irImitation invariant. From the independence of I(k,' . = 2. 3 ..... -

I it follows that the density function of T -- { 1, T,n -N{ I ,} is
l,,gcoilcav(' and permutation invariant and hence Schur concave. Notice
that WV(n) = -Y(]_ consists of a single randomn varialdle. From the
,ame argument give in case (B) of Theorem $. it follw.- that the densitv

f T is Schur convcave.

Thiu- comIpletes the proof of Theorenm 9. ,

Theoiem 9 generalizes Theorem 2.1 of 'HPS S11 and contain- at NOw
1,:,)of. A'- an application of this teor.in it cani 1he showil that the (h.'Ility

linii,i inof a ge~eralized coi i Iound nmiltivai e Poisson i , DT. See HPS
S1 f 1 (l , 1ails.
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Re 9archers in applied fields have long recognized the usefulness of ineq~uali-
ties when exact results are not available. The use of inequalities allows us to
say that ore estimate is better than another, that one r-,aintenance policy is
better than another or that a certain selection procedure is better than
another etc., even though, we may not know the best estimator, the best
maintenance policy or the best selection procedUre. Such results are generally
obtained from inequalities between two probability measures or random variables.
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Inequalities between random variables are in turn obtained from deterministic
inequalities or deterministic partial orderings.

Hardy Littlewood and P6lya in their classical book entitled Inequalities
have discussed various partial orderings in R, one of which is known as
majorization. Majorization is intimately related to Schur functions. This
partial ordering was used to derive the partial orderings of stochastic
majorization and DT ordering among distributions in a series of papers by
Proschan and Sethuraman (1977); Nevius, Proschan and Sethuraman (1977);
Hollander, Proschan and Sethuraman (1977), and Hollander, Proschan and
Sethuraman (1981). Even though many more partial orderings of this type
have been studied in recent papers and books by Marshall and Olkin (1979),
Tong (1980), Boland, Tong and Proschan (1987,1988), Abouammoh, El-Neweihi
and Proschan (1989), the above two partial orderings remain the centerpiece
in this type of research endeavor. In this expository paper, we describe
the essentials of stochastic majorization and DT ordering and demonstrate
some applications. A new proof of a slight generalization of earlier result
on DT functions in Hollander, Proschan and Sethuraman (1981) is given.
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